[東京工業大学 2022 年前期 5]

☆

$$a$$
は $0 < a \le \frac{\pi}{4}$ を満たす実数とし, $f(x) = \frac{4}{3}\sin\left(\frac{\pi}{4} + ax\right)\cos\left(\frac{\pi}{4} - ax\right)$ とする。

このとき,次の問いに答えよ。

(1) 次の等式(*)を満たすaがただ1つ存在することを示せ。

$$(*)$$
 $\int_{0}^{1} f(x)dx = 1$

(2) $0 \le b < c \le 1$ を満たす実数 b, c について,不等式

$$f(x)(c-b) \le \int_{b}^{c} f(x)dx \le f(c)(c-b)$$

が成り立つことを示せ。

(3) 次の試行を考える。

[試行] n 個の数 $1, 2, \dots, n$ を出目とする,あるルーレットをk 回まわす。

この [試行] において、各 $i=1, 2, \dots, n$ についてi が出た回数を $S_{n,k,i}$ とし、

$$(**) \qquad \lim_{k \to \infty} \frac{S_{n,k,i}}{k} = \int_{\frac{i}{n}}^{\frac{i}{n}} f(x) dx$$

が成り立つとする。このとき、(1)の等式が成り立つことを示せ。

(4) (3)の試行において出た数の平均値を $A_{n,k}$ とし, $A_n = \lim_{k \to \infty} A_{n,k}$ とする。

(**) が成り立つとき,極限値 $\lim_{n\to\infty}\frac{A_n}{n}$ を a を用いて表せ。

