[東京工業大学 2010 年前期 1]

 $\frac{1}{2}$

 $f(x) = 1 - \cos x - x \sin x$ とする。

- (1) $0 < x < \pi$ において, f(x) = 0 は唯一の解を持つことを示せ。
- (2) $J = \int_0^\pi |f(x)| dx$ とする。(1)の唯一の解を α とするとき , J を $\sin \alpha$ の式で表せ。
- (3) (2)で定義されたJと $\sqrt{2}$ の大小を比較せよ。

 \mathcal{C}

—☆

(1)
$$f'(x) = \sin x - (\sin x + x \cos x)$$
$$= -x \cos x$$

であり,増減表は右の通り。

х	0		$\frac{\pi}{2}$		π
f'(x)			0	+	
f(x)	0	7	$1-\frac{\pi}{2}$	7	2

$$f(0) = 0$$
 , $f\left(\frac{\pi}{2}\right) = 1 - \frac{\pi}{2} < 0$, $f(\pi) = 2 > 0$ であり ,

$$f(x)$$
 は, $0 < x < \frac{\pi}{2}$ で単調減少, $\frac{\pi}{2} < x < \pi$ で単調増加であるから $0 < \left(\frac{\pi}{2} < \right) x < \pi$ において

f(x) = 0 となる x がただ 1 つ存在する。

(2) (1)より , $0 < x < \alpha$ のとき f(x) < 0 , $\alpha < x < \pi$ のとき f(x) > 0 であるから ,

$$J = \int_0^{\pi} |f(x)| dx = \int_0^{\alpha} \{-f(x)\} dx + \int_{\pi}^{\pi} f(x) dx$$
 である。

ここで , f(x) の原始関数の 1 つを F(x) とすると , 部分積分によって

$$F(x) = \int f(x) dx = \int (1 - \cos x - x \sin x) dx = x - \sin x + x \cos x - \sin x$$

 $=x(1+\cos x)-2\sin x$ である。

よって ,
$$J = -F(\alpha) + F(0) + F(\pi) - F(\alpha)$$

= $F(0) + F(\pi) - 2F(\alpha)$
= $-2\{\alpha(1+\cos\alpha) - 2\sin\alpha\}$

$$=2\{2\sin\alpha-\alpha(1+\cos\alpha)\}$$
 となるが,

$$f(\alpha) = 1 - \cos \alpha - \alpha \sin \alpha = 0$$
 であり,

$$0<\alpha<\pi$$
 において $\sin\alpha\neq0$ であるから $\alpha=\frac{1-\cos\alpha}{\sin\alpha}$ なので,

$$J = 2 \left\{ 2 \sin \alpha - \frac{1 - \cos \alpha}{\sin \alpha} \cdot (1 + \cos \alpha) \right\}$$
$$= 2 \left(2 \sin \alpha - \frac{1 - \cos^2 \alpha}{\sin \alpha} \right)$$

$$=2\bigg(2\sin\alpha-\frac{\sin^2\alpha}{\sin\alpha}\bigg)$$

 $= 2 \sin \alpha$

となる。

(3)
$$2\sin\frac{3}{4}\pi = 2\cdot\frac{1}{\sqrt{2}} = \sqrt{2}$$
 であるから , α と $\frac{3}{4}\pi$ の大小を比較する。

$$f\left(\frac{3}{4}\pi\right) = 1 + \frac{1}{\sqrt{2}} - \frac{3}{4}\pi \cdot \frac{1}{\sqrt{2}} = \frac{4\sqrt{2} + 4 - 3\pi}{4\sqrt{2}}$$
 であり ,

$$4\sqrt{2}+4>4\times1.4+4=9.6=3\times3.2>3\pi$$
 であるから $f\left(\frac{3}{4}\pi\right)>0$ である。

よって
$$f(\alpha)=0$$
 なので , $\left(\frac{\pi}{2}<\right)\alpha<\frac{3}{4}\pi$ であるから , $J=2\sin\alpha>2\sin\frac{3}{4}\pi=\sqrt{2}$ したがって $J>\sqrt{2}$

[注] (3)の
$$f\left(\frac{3}{4}\pi\right)>0$$
 については,次のように示すこともできる。

$$f\left(\frac{3}{4}\pi\right) = 1 + \frac{1}{\sqrt{2}} - \frac{3}{4}\pi \cdot \frac{1}{\sqrt{2}} = \frac{2 + \sqrt{2}}{2} - \frac{3\sqrt{2}}{8}\pi$$
$$> \frac{2 + \sqrt{2}}{2} - \frac{3\sqrt{2}}{8} \times \frac{32}{10} = \frac{10 - 7\sqrt{2}}{10} = \frac{\sqrt{100} - \sqrt{98}}{10} > 0$$