[東京工業大学 2002年 前期 1]

実数 a に対し,積分

$$f(a) = \int_0^{\frac{\pi}{4}} \left| \sin x - a \cos x \right| dx$$

を考える。 f(a) の最小値を求めよ。

샀

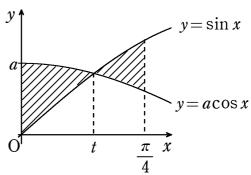
 $f(a) = \int_0^{\frac{\pi}{4}} \left| \sin x - a \cos x \right| dx$ は, $y = \sin x$ と $y = a \cos x$ の0 x $\frac{\pi}{4}$ の間で挟まれる部分の面積

なので, f(a)が最小値をとるaは正である。

また ,グラフの上下関係を考えると , f(a) が最小となる

のは ,
$$y = \sin x$$
 と $y = a \cos x$ のグラフが 0 x $\frac{\pi}{4}$ の範囲

で交わるときであり,その交点のx座標をtとおく。...



このとき ,
$$f(a) = \int_0^t -(\sin x - a \cos x) dx + \int_t^{\frac{\pi}{4}} (\sin x - a \cos x) dx$$

$$= \left[\cos x + a \sin x\right]_0^t + \left[-\cos x - a \sin x\right]_t^{\frac{\pi}{4}}$$

$$= \cos t + a \sin t - 1 - \frac{1}{\sqrt{2}} - \frac{a}{\sqrt{2}} + \cos t + a \sin t$$

$$= 2\cos t + 2a \sin t - \frac{a}{\sqrt{2}} - 1 - \frac{1}{\sqrt{2}}$$

ここで, $g(a) = 2\cos t + 2a\sin t - \frac{a}{\sqrt{2}}$ とおく。

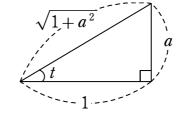
より $\sin t = a \cos t$...

$$\cos t = \frac{\sin t}{a} \text{ LD}$$

$$g(a) = 2 \cdot \frac{\sin t}{a} + 2a \sin t - \frac{a}{\sqrt{2}}$$

$$=2\left(a+\frac{1}{a}\right)\sin t-\frac{a}{\sqrt{2}}$$

より
$$a = \frac{\sin t}{\cos t} = \tan t$$
 なので



$$\hbar S \sin t = \frac{a}{\sqrt{1+a^2}}$$

したがって

$$g(a) = 2\left(a + \frac{1}{a}\right)\frac{a}{\sqrt{1+a^2}} - \frac{a}{\sqrt{2}} = 2\sqrt{1+a^2} - \frac{a}{\sqrt{2}}$$

$$g'(a) = 2 \cdot \frac{1}{2} (1 + a^2)^{-\frac{1}{2}} \cdot 2a - \frac{1}{\sqrt{2}} = \frac{2a}{\sqrt{1 + a^2}} - \frac{1}{\sqrt{2}} = \frac{2\sqrt{2}a - \sqrt{1 + a^2}}{\sqrt{1 + a^2}}$$

ここで,
$$2\sqrt{2}a-\sqrt{1+a^2}=0$$
 となるのは $2\sqrt{2}a=\sqrt{1+a^2}$

$$8a^2 = 1 + a^2$$

$$7a^2 = 1$$

$$a>0$$
より $a=\frac{1}{\sqrt{7}}$ のとき

g(a) の増減は下表に従う。

a	0		$\frac{1}{\sqrt{7}}$	
g'(a)		-	0	+
g(a)		>	最小	7

よって $a = \frac{1}{\sqrt{7}}$ のときに g(a) が最小となることがわかり ,

f(a) の最小値は

$$f\left(\frac{1}{\sqrt{7}}\right) = g\left(\frac{1}{\sqrt{7}}\right) - 1 - \frac{1}{\sqrt{2}} = 2\sqrt{1 + \frac{1}{7}} - \frac{\frac{1}{\sqrt{7}}}{\sqrt{2}} - 1 - \frac{1}{\sqrt{2}} = \frac{4\sqrt{2}}{\sqrt{7}} - \frac{1}{\sqrt{14}} - 1 - \frac{1}{\sqrt{2}}$$
$$= \frac{8\sqrt{14} - \sqrt{14} - 14 - 7\sqrt{2}}{14} = \frac{7\sqrt{14} - 14 - 7\sqrt{2}}{14} = \frac{\sqrt{14} - 2 - \sqrt{2}}{2}$$

〔参考〕

$$0 x \frac{\pi}{4}$$
においては $\cos x > 0$ なので,

$$f(a) = \int_0^{\frac{\pi}{4}} |\sin x - a\cos x| \, dx = \int_0^{\frac{\pi}{4}} \cos x |\tan x - a| \, dx \ge 1$$

 $y = \tan x$, y = a の大小で場合分けをした方が考えやすいかもしれない。

[東京工業大学 2002年 前期 2]

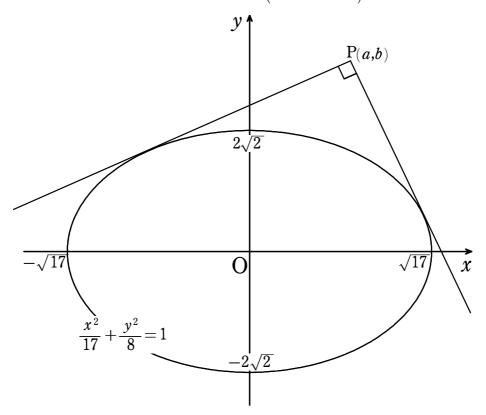
₹

楕円 $\frac{x^2}{17} + \frac{y^2}{8} = 1$ の外部の点 P(a, b) からひいた 2 本の接線が直交するような点 P の軌跡を

求めよ。

 $\overset{\sim}{\mathcal{L}}$

2 本の接線がx軸 , y軸と平行になるのは $(a,b)=\left(\pm\sqrt{17},\pm2\sqrt{2}\right)$ (複号任意)のときである。



2 本の接線がx軸 , y軸に平行でないとき , 2 本の接線を y=m(x-a)+b $\left(a\neq\pm\sqrt{17}\right)$ とおく。

このとき , 楕円の方程式と連立させると $\frac{x^2}{17} + \frac{\left\{m(x-a) + b\right\}^2}{8} = 1$

$$8x^2 + 17\{m(x-a) + b\}^2 = 17 \cdot 8$$

$$(8+17m^2)x^2-34m(ma-b)x+17\{(ma-b)^2-8\}^2=0...$$

となるが, の判別式をDとすると,接線である条件から

$$\frac{D}{4} = 17^2 m^2 (ma - b)^2 - (8 + 17m^2) \cdot 17 \left\{ (ma - b)^2 - 8 \right\}^2 = 0$$

$$17m^{2}(ma-b)^{2} - (8+17m^{2})(ma-b)^{2} + 8(8+17m^{2}) = 0$$

$$-8(ma-b)^{2} + 8(8+17m^{2}) = 0$$
$$-(ma-b)^{2} + (8+17m^{2}) = 0$$
$$(17-a^{2})m^{2} + 2abm + 8-b^{2} = 0 \dots$$

 $a \neq \pm \sqrt{17}$ であり , の 2 解が 2 本の接線の傾きである。

2 解を $m_{\!\scriptscriptstyle 1},\,m_{\!\scriptscriptstyle 2}$ とおくと 2 接線が直交することから

$$m_1 m_2 = -1$$
 $\frac{8 - b^2}{17 - a^2} = -1$ $a^2 + b^2 = 25$...

 $(a,b) = \left(\pm\sqrt{17},\pm2\sqrt{2}\right)$ のとき は満たされているので,求める点Pの軌跡は

原点中心,半径5の円

[東京工業大学 2002年 前期 3]

空間内にある一辺の長さが 1 の正三角形 ABC で,A の座標が (0,0,1) であり,B とC の z 座標が 等しいものを考える。点 $L(0,0,1+\sqrt{2})$ にある光源が xy 平面上に作るこの正三角形の影の部分の 面積の最大値を求めよ。

☆

正三角形 ABC の辺 BC の中点を M とする。

BC \(AM であり, 直線 LA は xy 平面と原点 O で交わる。

また,直線LB,LC,LMがxy平面と交わる点を

それぞれB', C', M' とする。

このとき光源Lがxy平面上につくる正三角形

ABC の影は OB´C´ である。

 \mathbf{M} が zx 平面の x 0 の部分にあり , \mathbf{C} の y 座標は

正であるとしても一般性を失わない。

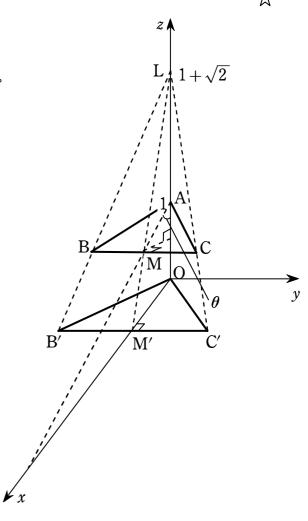
このとき \mathbf{M}' は x 軸上の x 0 の部分にあり,

 $B'C'\perp OM'$ である。

$$\angle OAM = \theta (0 \theta \pi)$$
とすると,

$$AM = \frac{\sqrt{3}}{2} \ \text{\it cash}$$

Mの座標は
$$M\left(\frac{\sqrt{3}}{2}\sin\theta, 0, 1-\frac{\sqrt{3}}{2}\cos\theta\right)$$



さらに , $MC = \frac{1}{2}BC = \frac{1}{2}$ であり , $B \geq C$ の z 座標は等しく , C の y 座標は正であるから ,

$$C$$
 の座標は $C\left(\frac{\sqrt{3}}{2}\sin\theta, \frac{1}{2}, 1 - \frac{\sqrt{3}}{2}\cos\theta\right)$

このとき , $\overrightarrow{\mathrm{OC}}$ = $\overrightarrow{\mathrm{OL}}$ + $k\overrightarrow{\mathrm{LC}}$ (k は実数) とおくと

$$\overrightarrow{\mathbf{OC}} = \overrightarrow{\mathbf{OL}} + k \left(\overrightarrow{\mathbf{OC}} - \overrightarrow{\mathbf{OL}} \right)$$

$$= \left(0, \ 0, \ 1 + \sqrt{2}\right) + k\left(\frac{\sqrt{3}}{2}\sin\theta, \ \frac{1}{2}, \ -\frac{\sqrt{3}}{2}\cos\theta - \sqrt{2}\right)$$

 \mathbf{C}' はxy平面上にあるので, $\overrightarrow{\mathbf{OC}'}$ のz成分は0であるから

$$(1+\sqrt{2})-k\left(\frac{\sqrt{3}}{2}\cos\theta+\sqrt{2}\right)=0$$

よって
$$k = \frac{1+\sqrt{2}}{\frac{\sqrt{3}}{2}\cos\theta + \sqrt{2}} = \frac{2(1+\sqrt{2})}{\sqrt{3}\cos\theta + 2\sqrt{2}}$$

したがって
$$C'$$
 の座標は C' $\left(\frac{2\left(1+\sqrt{2}\right)}{\sqrt{3}\cos\theta+2\sqrt{2}}\sin\theta,\,\frac{1+\sqrt{2}}{\sqrt{3}\cos\theta+2\sqrt{2}},\,0\right)$

正三角形 ABC の影の部分である $OB^{\prime}C^{\prime}$ の面積を $f(\theta)$ とすると

$$f(\theta) = \frac{1}{2} \times B'C' \times OM' = M'C' \times OM'$$

$$= (C' \mathcal{O} y 座標) \times (C' \mathcal{O} x 座標)$$

$$= \frac{\sqrt{3}(1+\sqrt{2})^2}{(\sqrt{3}\cos\theta + 2\sqrt{2})^2} \sin\theta$$
 となる。

$$f'(\theta) = \sqrt{3} \left(1 + \sqrt{2}\right)^2 \cdot \frac{\cos\theta \left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)^2 + 2\sqrt{3}\sin^2\theta \left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)}{\left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)^4}$$

$$= \sqrt{3} \left(1 + \sqrt{2}\right)^2 \cdot \frac{\cos\theta \left(\sqrt{3}\cos\theta + 2\sqrt{2}\right) + 2\sqrt{3}\sin^2\theta}{\left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)^3}$$

$$= \sqrt{3} \left(1 + \sqrt{2}\right)^2 \cdot \frac{-\sqrt{3}\cos^2\theta + 2\sqrt{2}\cos\theta + 2\sqrt{3}}{\left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)^3}$$

$$= \sqrt{3} \left(1 + \sqrt{2}\right)^2 \cdot \frac{-\left(\cos\theta - \sqrt{6}\right)\left(\sqrt{3}\cos\theta + \sqrt{2}\right)}{\left(\sqrt{3}\cos\theta + 2\sqrt{2}\right)^3}$$

$$-(\cos\theta-\sqrt{6})>0$$
, $\sqrt{3}\cos\theta+\sqrt{2}>0$ であるから

$$f'(\theta)=0$$
 となるのは $\cos\theta=-\frac{\sqrt{2}}{\sqrt{3}}$ のときで,このときの θ を α とおくと, $f(\theta)$ は $\theta=\alpha$ のときに最大となり, $f(\theta)$ の増減は次の表に従う。

θ	0		α		π
$f'(\theta)$		+	0	-	
$f(\theta)$	0	7	$f(\alpha)$	Z	0

ここで , 0 θ π より

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(-\frac{\sqrt{2}}{\sqrt{3}}\right)^2} = \frac{1}{\sqrt{3}} \quad \text{Tabs}$$

求める最大値は
$$f(\alpha) = \frac{\sqrt{3}\left(1+\sqrt{2}\right)^2}{\left(-\sqrt{2}+2\sqrt{2}\right)^2} \cdot \frac{1}{\sqrt{3}} = \frac{3+2\sqrt{2}}{2}$$

[東京工業大学 2002年 前期 4]

nを自然数とする。

(1) 次の極限値を求めよ。

$$\lim_{n\to\infty}\frac{1}{\log n}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)$$

(2) 関数 $y = x(x-1)(x-2)\cdots(x-n)$ の極値を与えるxの最小値を x_n とする。このとき

$$\frac{1}{x_n} = \frac{1}{1 - x_n} + \frac{1}{2 - x_n} + \dots + \frac{1}{n - x_n}$$

および $0 < x_n$ $\frac{1}{2}$ を示せ。

(3) (2)の x_n に対して,極限 $\lim_{n o\infty}x_n\log n$ を求めよ。

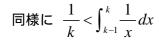
(1) $y = \frac{1}{x}$ は x > 0 において単調減少関数であるから

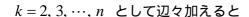
$$\int_{k}^{k+1} \frac{1}{x} dx < \frac{1}{k}$$

 $k = 1, 2, 3, \dots, n$ として辺々加えると

$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx < \sum_{k=1}^{n} \frac{1}{k}$$

$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx < \sum_{k=1}^{n} \frac{1}{k} \qquad \int_{1}^{n+1} \frac{1}{x} dx < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \dots$$





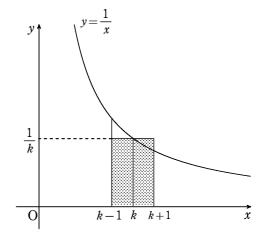
$$\sum_{k=2}^{n} \frac{1}{k} < \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} dx \qquad \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \int_{1}^{n} \frac{1}{x} dx \dots$$

ここで ,
$$\int_{1}^{n+1} \frac{1}{x} dx = \log(n+1)$$
 , $\int_{1}^{n} \frac{1}{x} dx = \log n$ であるから

,
$$\sharp \Im \log(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \log n$$

 $n \to \infty$ のときを考えるので $\log n > 0$ であり,これで辺々を割ると

$$\frac{\log(n+1)}{\log n} < \frac{1}{\log n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) < \frac{1 + \log n}{\log n}$$



$$\mathbb{Z}\mathbb{Z}\mathbb{C}, \lim_{n\to\infty} \frac{\log(n+1)}{\log n} = \lim_{n\to\infty} \frac{\log n \left(1 + \frac{1}{n}\right)}{\log n}$$

$$= \lim_{n\to\infty} \frac{\log n + \log\left(1 + \frac{1}{n}\right)}{\log n}$$

$$= \lim_{n\to\infty} \left\{1 + \frac{\log\left(1 + \frac{1}{n}\right)}{\log n}\right\}$$

$$= 1$$

$$\lim_{n \to \infty} \frac{1 + \log n}{\log n} = \lim_{n \to \infty} \left(\frac{1}{\log n} + 1 \right)$$

$$= 1$$

であるから、はさみうちの原理により

$$\lim_{n \to \infty} \frac{1}{\log n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = 1$$

(2)
$$f(x) = x(x-1)(x-2)\cdots(x-n)$$
 ...

$$f'(x) = \{(x-1)(x-2)\cdots(x-n)\} + \{x(x-2)\cdots(x-n)\} + \cdots + \{x(x-1)(x-2)\cdots(x-n+1)\} \dots$$

()
$$x=0$$
 のとき , より $f^{'}(0)=(-1)(-2)\cdots(-n)$ このことから n が偶数のとき $f^{'}(0)>0$, n が奇数のとき $f^{'}(0)<0$ よって $f^{'}(0)\neq 0$

() x<0 のとき , の右辺の各項はすべて負の数の積になっているから $n\, {\it m}$ 能数のとき $f^{'}(x)>0$, $n\, {\it m}$ 奇数のとき $f^{'}(x)<0$ よって x<0 のとき $f^{'}(x)\neq 0$

したがって,()()より f(x)は x 0 で極値をもたない。

() より f(0) = f(1) = 0 であり,0 < x < 1 で f(x) の符号に変化のないこと,f(x) が微分可能な連続関数であることから,f(x) は0 < x < 1 で少なくとも 1 つの極値をもつことがわかる。

そのときのxを x_n とする $(f'(x_n) = 0, f(x_n) \neq 0)$ 。

このとき , より

$$\frac{f'(x_n)}{f(x_n)} = \frac{1}{x_n} + \frac{1}{x_n - 1} + \frac{1}{x_n - 2} + \dots + \frac{1}{x_n - n} = 0$$

$$\frac{1}{x_n} = \frac{1}{1 - x_n} + \frac{1}{2 - x_n} + \dots + \frac{1}{n - x_n}$$

また, $0 < x_n < 1$ であるから

$$n=1$$
 のとき $\frac{1}{x_1} = \frac{1}{1-x_1}$ より $x_1 = \frac{1}{2}$

$$n 2 のとき \frac{1}{x_n} = \frac{1}{1-x_n} + \frac{1}{2-x_n} + \dots + \frac{1}{n-x_n} > \frac{1}{1-x_n} > 0$$
 より $\frac{1}{x_n} > \frac{1}{1-x_n} > \frac{1}{1-x_n}$ $1-x_n > x_n$ $x_n < \frac{1}{2}$

(3) (2)より
$$\frac{1}{x_n} = \frac{1}{1-x_n} + \frac{1}{2-x_n} + \dots + \frac{1}{n-x_n}$$
 , $0 < x_n$ $\frac{1}{2}$ であるから $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \frac{1}{x_n}$ $\frac{1}{1-\frac{1}{2}} + \frac{1}{2-\frac{1}{2}} + \dots + \frac{1}{n-\frac{1}{2}}$

 $n \to \infty$ のときを考えるので $\log n > 0$ であり,これで辺々を割ると

$$\frac{1}{\log n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) < \frac{1}{x_n \log n} \quad \frac{1}{\log n} \left(2 + \frac{2}{3} + \dots + \frac{2}{2n - 1} \right)$$

$$= \frac{1}{\log n} \left\{ 2 + \left(\frac{2}{3} + \dots + \frac{2}{2n - 1} \right) \right\}$$

$$= \frac{1}{\log n} \left\{ 2 + \left(\frac{2}{2} + \dots + \frac{2}{2n - 2} \right) \right\}$$

$$= \frac{1}{\log n} \left\{ 2 + \left(1 + \dots + \frac{1}{n - 1} + \frac{1}{n} \right) \right\}$$

$$= \frac{2}{\log n} + \frac{1}{\log n} \left(1 + \dots + \frac{1}{n-1} + \frac{1}{n} \right)$$

である。

$$\exists \, \mathsf{5} \, \mathsf{1} \mathsf{7} \, , \, \lim_{n \to \infty} \frac{1}{\log n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \lim_{n \to \infty} \left\{ \frac{2}{\log n} + \frac{1}{\log n} \left(1 + \dots + \frac{1}{n-1} + \frac{1}{n} \right) \right\} = 1$$

より,はさみうちの原理から
$$\lim_{n \to \infty} \frac{1}{x_n \log n} = 1$$

したがって
$$\lim_{n\to\infty} x_n \log n = 1$$

[注](1)の別解を示す。こちらの方が簡潔に示せている。

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx$$

図の太線で囲んだ部分と考えると

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \int_{1}^{n} \frac{1}{x} dx \dots (A)$$

打点部分の面積と考えると

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \int_{1}^{n} \frac{1}{x} dx \dots (B)$$

(A),(B)より

$$\log n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \log n$$
 $\hbar \delta$

$$1 < \frac{1}{\log n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) < \frac{1}{\log n} + 1$$

となり,より簡単に結論が導ける。

